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Basic Ideas for Ocean Data Quality Control

& Quality control (QC) for ocean data from data assimilation perspective

— Basic concepts are similar to atmospheric systems (theoretical, i.e.,
Bayesian view).

— Details may require unique adjustment, development, and
implementation, for example:

* QOcean data assimilation is relatively new and may have different emphases
from atmospheric data assimilation.

* Scales are different in both:
» Dynamics

» Observations



Outline

¢ Some examples of ocean data assimilation systems

— Global
e ECMWF ORA-S3 [reanalysis and near real-time]
 SODA [reanalysis]

— Regional
e ROMS 3D-Var [near real-time]

& Types of ocean data used in the assimilation
— Conventional platforms
* |n-situ [mainly T, S]
* Remote sensing, satellite in particular —>  See Bob Miller’s lecture on July 15
— New types of platforms
* HF (high frequency) radar [surface (u, v)]
e Lagrangian data [trajectories]

¢ Quality control

— Basic concepts —>  See Andrew Lorenc’s lecture on July 9
— Examples



ECMWF ORA-S3 (Ocean Re-Analysis System 3)

& Global ocean near real-time analysis & reanalysis since 2006

— Daily starting from January 1, 1959 & continuously maintained up to 11 days
behind real time

— Main purposes: to provide
* |nitial conditions for seasonal/monthly forecasts
 historical representation of ocean for climate studies
* Ensemble of ocean analysis (5 total) for uncertainties
— Featuring
* Online bias-correction algorithm
* Assimilation of salinity data
* Assimilation of altimeter-derived sea level anomalies

— Designed to reduce spurious climate variability due to observing system change
while taking advantages of the new observations

¢ Previous systems

— System 1 (ORA-S1) starting 1997. Initial condition for first ECMWF operational
seasonal forecasting system

— System 2 (ORA-S2) introduced in 200.

http://www.ecmwf.int/products/forecasts/d/charts/ocean/ Balmaseda, Vidard, Anderson (2008)



ORA-S3 Real-Time Products: 3D evolution of ocean state

¢ Sea Surface Temperature |

ECMWF S3 ocean analysis 20090712 (1 days mean)

ECMWF S3 ocean analysis: Anomaly

20090712 (1 days mean)
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ORA-S3 Model Overview

¢ Model: ECWMF HOPE ocean model
— Horizontal resolution 1°x1° with equatorial refinement (0.3° in meridional)
— Vertical 29 levels, thickness of 10m in upper oceans

¢ Forcing
— ERA-40 from 1959 to June 2002; Operation NWP analysis afterwards

Timeline of atmos forcing
Operations

1/1/59 ERA-40 forcing 30/?/02 forcing

Initial conditions for

_ _ m|/81 coupled model calibration hindcasts 1/1%/05
Timeline of seasonal forecasts | |




ORA-S3 Data Assimilation System Overview

¢ Method
— 3D Optimal Interpolation (Ol), simultaneously down to 2000m

& Data types assimilated: all observations in upper 2000m
— Subsurface temperature (in-situ)
— Salinity (in-situ)
— Altimeter-derived sea level anomalies (remote sensing)
& Data sets assimilated:
— Prepared for ENACT (Enhanced Ocean Data Assimilation and Climate Prediction)

& ENSEMBLES (Ensemble-based predictions of climate changes and their impact)
until 2004, with quality control (QC: Ingleby and Huddleston, 2007)

— From GTS (ENACT/Global Telecommunication System) thereafter

Timeline of Observations & Surface Data

1/1/59 ENACT / ENSEMBLES QC data set 31/ 1|2/04 GTS
1
1/1/82 )
ERA-40 SSTs I Smith Reynolds Olv2 SSTs >
[
1/1/;993 Altimetry

| >



ORA-S3 Considerations for Seasonal Forecasting System

& Data assimilation system needs to take into account of

— Interannual — decadal variability in the ocean initial conditions are properly
represented: strong relaxation to climatology is not desirable

— Spurious variability due to the change of the observing system network should be
reduced as much as possible

— Large initialization shocks in the coupled model, which may damage the forecast
skill, should be avoided.

¢ In comparison to previous systems
— the weight to observations has been reduced and

— the relaxation to climatology is significantly weaker.

& For ensemble forecasting, five simultaneous analyses are performed.



Data Coverage (Real Time)

XBT probes: 116 profiles
Argo tloals: 2692 profiles

Moor ings: 931 profiles

Partially Accepled: 715 profiles
Fully Accepled: 2422 profiles

Fully Rejected: 602 profiles

SuperObs: 1506 profiles

(at least one per profile)

In situ observation

monitoring (temp)

S3 ocean analysls

10 days period centered on 20090708

http://www.ecmwf.int/products/forecasts/d/charts/ocean/real_time/obsmap!20090708!Temperature!/



Data Coverage (Real Time)
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Partially Accepled: 655 profiles

Argotloals: 2579 profiles Fully Accepled: 1670 profiles
Moor ings: 230 profiles Fully Rejecled: 484 profiles

In situ observation

SupearObs: 622 profiles . .
monitoring (sal)
(at least one per profile)
S3 ocean analysls

10 days period centered on 20030708

http://www.ecmwf.int/products/forecasts/d/charts/ocean/real_time/obsmap!20090708!Salinity!/



Data Coverage. January 1958

Reports available from World Ocean Database 2001 (WODO01)
* Green X: Bathy data (3508 reports),
* Purple T: Ocean station data (855 reports).

Actual position is at the bottom left corner of each letter.

Ingleby, Huddleston(2007)



SODA (Simple Ocean Data Assimilation)

# Global ocean reanalysis system (SODA 1.4.2)
— Daily starting from 1958. for 44 yrs, span over ECMWF ERA-40 Atmos Reanalysis
— Used to provide historical representation of ocean for climate studies
— Featuring assimilation of data:
* Historical archives of temperature data by XBT, CTD, Mooring, Argo
 Salinity data by CTD, Mooring, Argo
* Sea surface temperature by remote-sensing

— Designed to reduce spurious climate variability due to observing system change
while taking advantages of the new observations

¢ Previous system
— Previous SODA for global upper ocean
(1950-1959)

Carton and Giese (2008)




SODA Model Overview & Reanalysis Products

¢ Model: Princeton MOM
— Horizontal 0.25°x0.24° on average
— Vertical 40 levels, thickness of 10m in upper oceans
¢ Forcing:
— ERA-40 + Global Precipitation Climatology Project
— Relaxation to World Ocean Atlas 2001 (WODO01) climatological sea surface

salinity
Eddy kinetic energy Sea level variance
Intraseasonal Seasonal-Interannual Intraseasonal Seasonal-Interannual

RNF 120F 1R0  120W  ROW n ROF 120F 180 120W  ROW n - 60F 120E 1 80 120 B60W - 60F 120E 1 80 120W  60W

Carton and Giese (2008)



SODA Data Assimilation System Overview

¢ Data assimilation method:
— Simple Ol-like formula
— Assimilation performed every 10 days

— Observations using within the window +45 days (multiple use of observations)
with lesser weights for observations away from the assimilation time

— Incremental correction for 5 days every time step (Bloom et a; 1996)
¢ Data and Data QC on in-situ data, similar to ORA-S3
— WODO1 (upper ocean only up to 1000m): location check, local stability check
— Buddy check among obs
— Observation-minus-forecast check Carton and Giese (2008)

970 1975 1980 1985 1990 1995 2000
Time (year)

Observations per year for T (left) and S (right) vs depth

1970 1975 1980
Time (year)



ROMS (Regional Ocean Modeling System) 3D-Var

& Regional ocean near real-time analysis and forecast system
— 4 times daily analysis and forecast (like atmospheric NWP) starting from 2003
— Regional along the US Western Coast Ocean, currently
e Southern California Bight
* Monterey Bay
* Prince Williams Sound
— Purpose:
e Coastal ocean analysis and forecasts
— Featuring
Assimilation of
» Data sampled by movable platforms (possibility for adaptive sampling)
* Remote sensing observations by satellite and HF radars
Evaluation using
* Independent data sets (mooring data, etc)

http://ourocean.jpl.nasa.gov/ourocean.html| Li, Chao, McWilliams, Ide (2008a,b)



ROMS 3D-Var Model Overview

¢ Regional Ocean Modeling System (ROMS)

— One-way nested configuration

* Pacific basin for largest domaifg=ss
* Nested coastal configuration l
» 15km-5km-1.5km-0.5km
» Vertical levels >24
— Relocatable, in the future
— Forcing by COAMPS
(Coupled Ocean/Atmosphere

Mesoscale Prediction System by Naval Research Laboratory)

247 L= — .
faew 1% 12w 20w
[ |

10 12 14




ROMS Data Assimilation System Overview

¢ Method o S i
— 3D-Var o e gm
— Assimilation window
* Analysis: every 6hr
* 48hr forecast: daily Analym s A sty
- Weak ConStraIntS for Aug.llz 09Z ISZI 2IZI Aug. 2:I03Z 09IZ -

* Hydrostatic balance
* Geostrophic balance
— Use of

* Variable transformation to streamfunction-velocity potential, instead of
horizontal velocity

* Kronecker product in the background covariance [ —
for representing inhomogeneity LI =<rio]
and anisotropy suitable for the coastal ocean :;:;,::’:’:

— Assimilation of o
* T,S, SSH (conventional data type) NI 111

» Surface velocity (new type of data)



ROMS Products Examples

¢ Comparison with the independent data by mooring (vertical profile at M1)
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Ocean Observations

¢ In this presentation, we focus on
— In situ
— HF radar (remote-sensing)

& See Bob Miller’s lecture for satellite (remote-sensing) observations




In-Situ Instruments for Vertical Profile. XBT

¢ BathyThermographs: Temperature recorders. 0°,~0.1-0.2°C
— Mechanical (MBTs):
* Lowered and then winched from the ship down to ~300m.
— Expendable (XBTs):
e Dropped from a ship;
* Designed to fall at a constant rate..
* Many goes to 460/760m, some goes to 1800m

{
Fig. 1: XBT diagrams: Bathythermograph (probe) 1

END
CcaP
and exploded view. E
[ Al PROBE
£ WIRE SPOOL
comne | EL




In-Situ Instruments for Vertical Profile. CTD

# Conductivity, Temperature, & Depth (CTD): High-quality T/S profile of 150 levels
(0°;, 0°%)~(0.002°C, 0.005psu)
: T e

Ship deployed CTD
Woods Hole Oceanographic Institute




In-Situ Instruments for Vertical Profile. Mooring

¢ Mooring: CTD, Surface observations
— TAO (Tropical Atmosphere Ocean):

For improved detection, understanding and
prediction of El Nifilo and La Nifa.

— TRITON
— PRITA (small no of deep water buoys)

Global Tropical Moored Buoy Array
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¢ Mooring Data

wea surface Temperature and Winds

In-Situ Data

TAO/TRITON 5-Day Temperature (°C)
End Date: July 11 2009 2°S to 2°N Average
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In Situ Instruments (Movable): Glider
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In-Situ Instruments (Movable/Lagrangian). Floats

¢ Argo Floats. Observation on the isopyncnal surface
— (T,S)by CTD

— (u,v) derived from position

along (x2P))(t,), p(x?P))(t,)) in upper 2000m

NAC Float 255, Start date: 213.0
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Global Ocean Observing System by ARGO Floats

son 1 3341 Floats
| . 12-Jul-2009

60'E 120°E 180° 120'W 60'W 0

» Argo are used as the platform for continuous observation
¢ Eulerian observations of T, S, and velocity
» By November 2007, Global observation network by drifters is 100% complete
¢ ~3000 profiling at the 5°x5° resolution
¢ 800 floats per year to maintain the level
http.//www-argo.ucsd.edu



In-Situ Instruments (Movable/Lagrangian). Drifters

¢ Observations at sea surface

- T

along (x2P))(t,)) at sea surface

34t
32t
30+
28 +
26 +
24
22t

20+

: Temperature

Drifter 63 (ID=9526392) during [ §/2/2001 - 312312002 ] T
T T T T ackage
. rature Sensor
26
o ock Drogue
u 24
.
b 22
55 50 20

Data available from
http://www.aoml.noaa.gov/phod/dac/dacdata.html http://www.drifters.doe.gov/design.html



Global Ocean Observing System by Drifters
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» Global observation network by drifters

# ~1200 drifters to cover at the 5°x5° resolution
» Drifters are used as the platform

# Eulerian observations of T (SLP, Wind)
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Remote-Sensing for Surface Current. HF Radar

UTC Time: 2009-07-13 14:58:12

Surface Current Mapping Local Time: 2009-07-13 07:58:12
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Quality Control of In-Situ Profiles

¢ Developed by Ingleby & Huddleston (2007) at UKMO

# Principles for building the QC system
— The system has to be automated to cope with the data volume involved

— Original, reported values should be used as long as possible (flagged, rather than
rejected)

— Any decisions taken by the system should be traceable

— The system is designed to support data assimilation

— Tools to monitor system performance and individual cases are available

— The generic checks and processing use code shared the UKMO atmospheric QC

— The generic checks have a clear theoretical basis in probability theory
¢ QC Overview
— Data specific check

— Background and buddy check




Pre-QC for XBT

& Prior rejects for XBT below 1000m due to inaccuracy of the instruments.

¢ XBT depth correction: XBT depth is computed based on the time of the
release.

— All XBTs are designed to fall at the known rate, according to the manufacturer's
design (formula, or equation for depth vs time from the release).

— Many won’t; revised equation (linear correction) is suggested by Hanawa et al
(1995).

— Depth for the profiles taken before Hanawa et al (1995) were corrected.

— Additional difficulties:
* Older data may not have record for type of XBT used
* In the cold sea, viscosity is higher & drop rate changes.

)

P o
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Importance of QC / Bias Correction

¢ Ocean temperature change from 2004 to 2006

Original
i Correction in temperature
due to bad data from the
Argo floats and XBTs
Corrected
——

'04-'06 Temperature Change at 500m ( () )
T U http://earthobservatory.nasa.gov/Features/OceanCooling/page3.php
-1.5 -1 -0.5 0 0.5 1 1.5



QC for Data Specific Check

¢ Movable instruments
— Vertical check for the value of data: against constant, spike or step.
— Horizontal position of the data along the track for each identifier: kinks or jumps.

# Superobs for mooring in time: TRITON are quasi-hourly but formed into
daily averages.

& Stability check for T/S based on the density for vertical profiles.

¢ Duplicate check and thinning in space.

Background and Observation Buddy Checks are Similar to Atmos QC




New Types of Observations

& Ocean observations are (with respected to atmospheric observations)
— Sporadic
— Inhomogeneous
— Limited to upper ocean

¢ New types of observations that are promising & challenging
— HF radar observations
— Lagrangian observations




HF Radar: Remote-Sensing Surface Current

HF Radar surface currents at 2009/07/12/21GMT

HF Radar surface currents at 2009/07/12{21GMT =T
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- . C 3
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current speed [cm/s]

¢ Surface current data
— Gridded & smoothed (u,v)

o : B S| # Significant error
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current speed [cm/s]
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Lagrangian Data
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Data available from http.//www.aoml.noaa.gov/phod/dac/dacdata.html|




Additional Motivation for Lagrangian Data. Rescue Mission

& Air France Flight 447. May 31, 2009
— Drifters were identified in the area where the plane disappeared
— Brazilian Navy deployed 5 more drifters on June 14

36W 34W 32W 30W 28W 26W 24W 22W 20W 18W
http://www.aoml.noaa.gov/phod/dac/gdp_information.html|



Additional Motivation: Hurricane Prediction

Aug 28
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Satellite altmetry-cerived field of sea heicht
anomaly (SHA) on August 28, 2005, in the Gulf
of Mexico. The large values {red) of SHA in the
center of the GuIf are indicative of the presence
of a warm anticyclonic ring. The circles of
different colors indicate the track and intensity of
Hurricane Katrina. The isobath of 200m is
su perimposed.

NOAA GOM surface dynamics report for Katrina
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http://www.aoml.noaa.gov/phod/altimetry/katrinal.pdf



Adaptive Sampling by Drifters for Better Hurricane Prediction. 1

¢ Hurricane Gustav
— 12 drifters deployed in the forecast path of Gustav on August 31, 2008

— All survived and transmitted data
Storm shown at NHC forecast for 8/31 1000Z. Wind circles: 64/50/34kt winds
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Adaptive Sampling by Drifters for Better Hurricane Prediction. 2

¢ Hurricane lke

— 9 drifters deployed in the forecast path of Ike on September 11, 2008
— Blues are deployed on August 31, 2008

Storm shown at NHC forecast for 9/11 1200Z. Wind circles: 64/50/34kt winds
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Basic Elements of Lagrangian Data Assimilation System

Eulerian Model: Lagrangian Observation:

State x; Location y,
u, (t,) ) (L)
x.(t,)={v,(t) Y, (t)=| ©(t)
h,-j, (tk) NF ~10% I:rD(,[;') (tk)] LD =2 [or 3]
: per drifter

Data Assimilation Method




Ensemble-Based Lagrangian Data Assimilation

¢ Use of ensemble X = {X1,...,XN6} to represent the uncertainty of x
in particular, mean and covariance

* mean

()

X|
Z| =
7

D e D,n

® covariance

P — PFF PFD
PDF PDD
_ 1 % (an_)_(F)(xF,n_)_(F)T (
Ne ~Tos (an - )_(D)(an - X, )T (

Kalman filter approach: Variational approach ((similar):
* Extended Kalman filter. Ide, Jones, Kuznetsov (2002) * Ocean 4D-Var. Nodet (2006)
* Ensemble Kalman filter. Salman, Kuznetsov ,Jones, Ide (2006) * Atmos Operational GEOS5. Meunier et al (2009)



Mechanisms of Lagrangian Data Assimilation (LaDA)

Forecast from t, ; to t,: Observation at t,:

Y,
R,

_(XE]_'_ PFfD(PI;D+R;D)_1 ( o f)
D

PI;D (PI;D * R;D )_1 —




Gulf of Mexico Application

¢ Ocean circulation: » Data assimilation system
Loop-current eddy ¢ Perfect model scenario
— 3 layer shallow-water model with the o N,=32-1028
structured curvilinear grid o[, =2-6
— Horizontal resolution: 5-13km ¢ Initial perturbation in layer depth only

(average 8.3km)
— Vertical resolution: 2 layers
at 200m, 800m, 2800m balance)

— Current forcing at 22.4Sv

(velocity determined by geostrophic

Time: 0 Days

—-2000

9B 92 88w 8w 8" W

Vernieres, Ide, Jones (2009)



Proof of Concept

2 driftera

6o ety 03 e BV

oW B O ey B BeTW 300V

8O epOy 33%

A5 a0 BI% skw 8w

Sl | 005 0
[m]



Remarks for Eddy Tracking in the Gulf of Mexico

¢ LaDA can track the detaching eddy quite effectively.
— How did | know where to deploy drifters?

¢ Assimilation of chaotic data???
— Lagrangian dynamics is chaotic.

— Necessity for new types of QC can arise from internal/nonlinear dynamics (chaos) of
the system

Some drifters look as if they are outside of the eddy
But they will remain in the eddy - How do we know?




QC. Ocean Dynamics Induced by Vortices (Eddies)

Underlying true system Data assimilation system
and observation

¢ Ocean
o - _
Q:,‘. O Vortex (eddy)
| X — Tracer (drifter)
sL i A ¢ DA System Parameters
? l — o for Q=021
— p for R=p?I
— AT
¥ vortex A vortex
v tracer A tracer

1 obs. 1 obs.



Assimilation of Chaotic Data

& Parameters (o, p, AT)=(0.04, 0.02, 1.5)

Streamfunction in Lagrangian Frame
Initial condition _

n Unobserved vortices

11 @)

0.2: i i

-3 -2

% o vortex (assimilated) | Observed tracer
A (true)

vr o tracer (assimilated)
A (true)



& Parameters (o, p, AT)=(0.04, 0.02, 1.5)

Assimilation of Chaotic Data Without QC

3¢ 25F
/ 2f
2{/ .|
%
05r 4 %:A’\»\
Q ot f& % };
-1 Rl il
e -1 5} n-/
-3 2f
-25¢ : : :
-2 -1 0
(X7,¥7) (0.3,-0.6 (2.4,-2.4)
Failure % 0 55.5 0.5 15 0
< |xa- x> 0.12 1.90 0.11 0.29 0.11




Cause of Sudden Divergence: Hyperbolic Effect

& Hyperbolic effect occurs near the linearly
hyperbolic region of velocity

(\: hyperbolicity given by the
positive local Lyapunov exponent)

%XD :MD(XF)XD = XD(t):F (XF)XD(tO)
dipDD =M, (x, )P+ P.M, (x.) = P (t)=F (x. )Py (t)F (x.)

® Ax? can be updated correctly: P, grows linearly in time with exponent 2A:
P, (P, +R°) (y2 —xp)
® Ax?: may be unreasonably large because
P, (P, +R°) (yo —xp)
oP_, may be approximated by too large with exponent A:

eDragged by a large innovation (y°,-x°;)



QC of Chaotic Data: Simple Sanity Check for Axe.

¢ C. = Standard deviation of Ax?. with respect to the expected error

— Piis independTent of1fo or x',: the flow has no knowledge of the drifters
=(ax?) (PL) Ax?
Doesn’t care about Pf

ax: =PL (P +R2) (y2 —x))

/
May not be correctly estimated

»Implementation
oif C. < 6: Update of x;
oif C. > &: No update of x; (but x;, is updated)
#(C.is computed for x, within r, from x; (rep <Moc)

¢Control is applied to entire x, within r, ;. from x,

Method is simple yet works extremely well




Summary

& Ocean data assimilation is relatively new, and may have different
— Principal goals
— Scales
— Observations.
& Conceptually, ocean data QC and atmospheric data QC are similar, but as in
the case for atmospheric data QC, we have to handle
— Individual
— Data sets
— Data types
¢ Observations are extremely important in ocean data assimilation
— Number is limited
— Inhomogeneous in time and space
¢ New types of observations are available
— New types of QC: for example, QC for chaotic data (e.g., Lagrangian data)
— Observing system design can be as important as the observed data themselves.




